
General Description

Block Diagram

jbosn@jbosn.com

Hardware

HALDriversDisplay Input

Synchronization Server

Time Server

System Server

NANO Kernel

D
evice Server

File-System
Server

Window-System
Server

G
raphic Library

FAT Library

R
A

M
 Library

R
O

M
 Library

Application

Network
Server

ARP
RARP
ICMP

IP
UDP

IP

Net Drivers

FTL

•

The JBOSN Operating System is a multi-layered, modular, high-performance
real-time operating system designed specifically for embedded microprocessors.
It provides a complete multitasking environment. It is built around the JBOSN real-time
multi-tasking NANO-KERNEL and a collection of companion software components
and service servers. Every servers implement a logical collection of system services.
To the application developer, the system service requests appear as re-entrant C functions
callable from an application. Any combination of server and library components can be
incorporated into a system to match your real-time design requirements.

Design Principles

Kernel
1. Multi-Layer kernel structure :
 modularity, portablibity, scalability
2. Multi-Tasking/Thread and flexible IPC
3. Precise timer and Priority based real-time scheduler
4. Scalable hard-real-time

I/O manager
1. Constant device management and efficient I/O system

Resource Management
1. Cost efficient use of memory
2. Reliable and Robust system services

User
1. Easy to use
2. Low latency

•

•

•

Advantages

•Modularity

• Scalability

•Stability

•Memory

Nano-kernel

Micro-kernel

Macro-kernel

Library/Driver/HAL

Applications

Minimum real-time operating system and library(8KB)

Principal RTOS servers (time server, system server, sync server)

Expanded RTOS servers
 (device server, filesystem server, window server, network server)

Consisted of the standard library, middle-ware, device driver and HAL

Applications by user

Server concept Main functions are designed by server concept and added to JBOSN RTOS.
User-required server can be developed by server concept.

User developed library The in-house library can be added and applied to server-development

Mutual exclusion The resources is mutually exclusive between servers,
then the expansion of required function is very easy

Independency The independency between modules increase the stability and
make easy to debug

modularity The module are seperated in phsyical area

Error propagation The problem of one module can not propagate to the others

Small memroy
requirement

The memory requirement of modules are very small.
For example NANO-KERNEL size is 8KB

Efficient relocation All modules can be generated by seperated binary images.
The relocation is very easy and efficient

